$\mathbf{1}$	$c=6$ $k=-7$	1 2	M1 for $f(2)=0$ used or for long division as far as $x^{3}-2 x^{2}$ in working	3

2	(i) $x+1)(2 x-3)=9$ o.e. $2 x^{2}-x-3=18 \text { or } x^{2}-1 / 2 x-3 / 2=9$ (ii) $\quad x-7)(x+3)$ -3 and $7 / 2$ o.e. or ft their factors base 4, height 4.5 o.e. cao	M1 A1 B1 B1 B1	for clear algebraic use of $1 / 2 \mathrm{bh}$; condone $(x+1)(2 x-3)=18$ allow x terms uncollected. NB ans $2 x^{2}-x-21=0$ given NB B0 for formula or comp. sq. if factors seen, allow omission of -3 B0 if also give $b=-9, h=-2$	5

| 3 | $\mathrm{f}(2)=3$ seen or used | M1 | allow M1 for divn by $(x-2)$ with $x^{2}+2 x+$
 $(k+4)$ or $x^{2}+2 x-1$ obtained |
| :--- | :--- | :--- | :--- | :--- |
| $2^{3}+2 k+5=3$ o.e. | $k=-5$ | M1
 B1
 alt: M1 for $(x-2)\left(x^{2}+2 x-1\right)+3$ (may
 be seen in division) then M1dep (and
 B1) for $x^{3}-5 x+5$
 alt divn of $x^{3}+k x+2$ by $x-2$ with no
 rem. | 3 |

4	$\mathrm{f}(1)$ used	M1	or division by $x-1$ as far as $x^{2}+$		
$1^{3}+3 \times 1+k=6$					
$k=2$				\quad	A1
:---	:---				
A1					
or remainder $=4+k$					
B3 for $k=2 \mathrm{www}$	$\quad 3$				
:---					

5	$\begin{aligned} & 5+2 k \text { soi } \\ & k=12 \\ & \text { attempt at } \mathrm{f}(3) \\ & 27+36+m=59 \text { o.e. } \\ & m=-4 \text { cao } \end{aligned}$	M1 A1 M1 A1 A1	allow M1 for expansion with $5 x^{3}+$ $2 k x^{3}$ and no other x^{3} terms or M1 for (29-5) / 2 soi must substitute 3 for x in cubic not product or long division as far as obtaining x^{2} $+x$ in quotient or from division $m-(-63)=59$ o.e. or for $27+3 k+m=59$ or ft their k

6 (i)	trials of at calculating $\mathrm{f}(x)$ for at least one factor of 30 details of calculation for $f(2)$ or $\mathrm{f}(-3)$ or $\mathrm{f}(-5)$ attempt at division by $(x-2)$ as far as $x^{3}-2 x^{2}$ in working correctly obtaining $x^{2}+8 x+15$ factorising a correct quadratic factor $(x-2)(x+3)(x+5)$	M1 A1 M1 A1 M1 A1	M0 for division or inspection used or equiv for $(x+3)$ or $(x+5)$; or inspection with at least two terms of quadratic factor correct or B2 for another factor found by factor theorem for factors giving two terms of quadratic correct; M0 for formula without factors found condone omission of first factor found; ignore ' $=0$ ' seen allow last four marks for $(x-2)(x+3)(x+5)$ obtained; for all 6 marks must see factor theorem use first
6 (ii)	sketch of cubic right way up, with two turning points values of intns on x axis shown, correct ($-5,-3$, and 2) or ft from their factors/ roots in (i) y-axis intersection at -30	B1 B1 B1	0 if stops at x-axis on graph or nearby in this part mark intent for intersections with both axes or $x=0, y=-30$ seen in this part if consistent with graph drawn

6 (iii)	($x-1$) substituted for x in either form of eqn for $y=\mathrm{f}(x)$ $(x-1)^{3}$ expanded correctly (need not be simplified) or two of their factors multiplied correctly correct completion to given answer [condone omission of ' $y=$ ']	M1 M1 dep M1	correct or ft their (i) or (ii) for factorised form; condone one error; allow for new roots stated as $-4,-2$ and 3 or ft or M1 for correct or correct ft multiplying out of all 3 brackets at once, condoning one error $\left[x^{3}-3 x^{2}\right.$ $\left.+x^{2}+2 x^{2}+8 x-6 x-12 x-24\right]$ unless all 3 brackets already expanded, must show at least one further interim step allow SC1 for $(x+1)$ subst and correct exp of $(x+1)^{3}$ or two of their factors ft or, for those using given answer: M1 for roots stated or used as $-4,-2$ and 3 or ft A1 for showing all 3 roots satisfy given eqn B1 for comment re coefft of x^{3} or product of roots to show that eqn of translated graph is not a multiple of RHS of given eqn

7	ii iii iv v	$\begin{array}{\|l\|} \hline f(-2) \text { used } \\ -8+36-40+12=0 \end{array}$ divn attempted as far as $x^{2}+3 x$ $\begin{aligned} & x^{2}+3 x+2 \text { or }(x+2)(x+1) \\ & (x+2)(x+6)(x+1) \end{aligned}$ sketch of cubic the right way up through 12 marked on y axis intercepts $-6,-2,-1$ on x axis $\begin{aligned} & {[x]\left(x^{2}+9 x+20\right)} \\ & {[x](x+4)(x+5)} \\ & x=0,-4,-5 \end{aligned}$	$\begin{aligned} & \hline \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & 2 \\ & \\ & \mathrm{G} 1 \\ & \mathrm{G} 1 \\ & \mathrm{G} 1 \\ & \mathrm{M} 1 \\ & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$	or M1 for division by $(x+2)$ attempted as far as $x^{3}+2 x^{2}$ then A1 for $x^{2}+7 x+$ 6 with no remainder or inspection with $b=3$ or $c=2$ found; B2 for correct answer allow seen earlier; M1 for $(x+2)(x+1)$ with 2 turning pts; no 3rd tp curve must extend to $x>0$ condone no graph for $x<-6$ or other partial factorisation or B1 for each root found e.g. using factor theorem	2 2 2 3

