1	<i>c</i> = 6	1		
	k = -7	2	M1 for $f(2) = 0$ used or for long division as	
			far as $x^3 - 2x^2$ in working	3

2	(i) $x+1(2x-3) = 9$ o.e.	M1	for clear algebraic use of $\frac{1}{2}bh$; condone	
			(x+1)(2x-3) = 18	
	$2x^2 - x - 3 = 18$ or $x^2 - \frac{1}{2}x - \frac{3}{2} = 9$	A1	allow <i>x</i> terms uncollected.	
			NB ans $2x^2 - x - 21 = 0$ given	
	(ii) $x - 7(x + 3)$	B1	NB B0 for formula or comp. sq.	
	-3 and $7/2$ o.e. or ft their factors	B1	if factors seen, allow omission of -3	
	base 4, height 4.5 o.e. cao	B1	B0 if also give $b = -9$, $h = -2$	5

3	f(2) = 3 seen or used $2^{3} + 2k + 5 = 3 \text{ o.e.}$ k = -5	M1 M1 B1	allow M1 for divn by $(x - 2)$ with $x^2 + 2x + (k + 4)$ or $x^2 + 2x - 1$ obtained <u>alt:</u> M1 for $(x - 2)(x^2 + 2x - 1) + 3$ (may be seen in division) then M1dep (and B1) for $x^3 - 5x + 5$ <u>alt</u> divn of $x^3 + kx + 2$ by $x - 2$ with no rem.	3

4	f(1) used $1^3 + 3 \times 1 + k = 6$	M1 A1	or division by $x - 1$ as far as $x^2 + r$		
	k = 2	A1	or remainder = $4 + k$ B3 for $k = 2$ www	3	

5	5+2k soi	M1	allow M1 for expansion with $5x^3$ +
			$2kx^3$ and no other x^3 terms
			or M1 for (29 – 5) / 2 soi
	<i>k</i> = 12	A1	
	attempt at f(3)	M1	must substitute 3 for <i>x</i> in cubic not
			product
			or long division as far as obtaining x^2
			+ x in quotient
	27 + 36 + m = 59 o.e.	A1	or from division $m - (-63) = 59$ o.e.
			or for $27 + 3k + m = 59$ or ft their k
	m = -4 cao	A1	

6	(i)	trials of at calculating $f(x)$ for at least one factor of 30	M1	M0 for division or inspection used
		details of calculation for $f(2)$ or $f(-3)$ or $f(-5)$	A1	
		attempt at division by $(x - 2)$ as far as $x^3 - 2x^2$ in working	M1	or equiv for $(x + 3)$ or $(x + 5)$; or inspection with at least two terms of quadratic factor correct
		correctly obtaining $x^2 + 8x + 15$	A1	or B2 for another factor found by factor theorem
		factorising a correct quadratic factor	M1	for factors giving two terms of quadratic correct; M0 for formula without factors found
		(x-2)(x+3)(x+5)	A1	condone omission of first factor found; ignore '= 0' seen
				allow last four marks for $(x-2)(x+3)(x+5)$ obtained; for all 6 marks must see factor theorem use first
6	(ii)	sketch of cubic right way up, with two turning points	B1	0 if stops at <i>x</i> -axis
		values of intns on x axis shown, correct $(-5, -3, \text{ and } 2)$ or ft from their factors/ roots in (i)	B1	on graph or nearby in this part mark intent for intersections with both axes
		y-axis intersection at -30	B1	or $x = 0$, $y = -30$ seen in this part if consistent with graph drawn
ysic.	sAndM	athsTutor.com	1	1

6	(iii)	(x - 1) substituted for x in either form of eqn for $y = f(x)$	M1	correct or ft their (i) or (ii) for factorised form; condone one error; allow for new roots stated as $-4,-2$ and 3 or ft
		$(x-1)^3$ expanded correctly (need not be simplified) or two of their factors multiplied correctly	M1 dep	or M1 for correct or correct ft multiplying out of all 3 brackets at once, condoning one error $[x^3 - 3x^2$ + $x^2 + 2x^2 + 8x - 6x - 12x - 24]$
		correct completion to given answer [condone omission of 'y =']	M1	unless all 3 brackets already expanded, must show at least one further interim step allow SC1 for $(x + 1)$ subst <u>and</u> correct exp of $(x + 1)^3$ or two of their factors ft <u>or</u> , for those using given answer:
				M1 for roots stated or used as -4,-2 and 3 or ft A1 for showing all 3 roots satisfy given eqn B1 for comment re coefft of x^3 or product of roots to show that eqn of translated graph is not a multiple of RHS of given eqn

7		f(-2) used	M1	or M1 for division by $(x + 2)$ attempted	
		-8 + 36 - 40 + 12 = 0	A1	as far as $x^3 + 2x^2$ then A1 for $x^2 + 7x +$	
				6 with no remainder	2
	ii	divn attempted as far as $x^2 + 3x$	M1	or inspection with $b = 3$ or $c = 2$ found;	
		$x^{2} + 3x + 2$ or $(x + 2)(x + 1)$	A1	B2 for correct answer	2
	iii	(x+2)(x+6)(x+1)	2	allow seen earlier;	
				M1 for $(x + 2)(x + 1)$	2
	iv	sketch of cubic the right way up	G1	with 2 turning pts; no 3rd tp	
		through 12 marked on y axis	G1	curve must extend to $x > 0$	
		intercepts –6, –2, –1 on x axis	G1	condone no graph for $x < -6$	3
	v	$[x](x^2 + 9x + 20)$	M1	or other partial factorisation	
		[x](x+4)(x+5)	M1		
		x = 0, -4, -5	A1	or B1 for each root found e.g. using	
				factor theorem	3